14 research outputs found

    Brown adipose tissue in the buccal fat pad during infancy.

    Get PDF
    BackgroundThe buccal fat pad (BFP) is an encapsulated mass of adipose tissue thought to enhance the sucking capabilities of the masticatory muscles during infancy. To date, no conclusive evidence has been provided as to the composition of the BFP in early postnatal life.ObjectiveThe purpose of this study was to examine whether the BFP of neonates and infants is primarily composed of white adipose tissue (WAT) or brown adipose tissue (BAT).Materials and methodsThe percentage of fat in the BFP in 32 full-term infants (16 boys and 16 girls), aged one day to 10.6 months, was measured using magnetic resonance imaging (MRI) determinations of fat fraction.ResultsBFP fat fraction increased with age (r = 0.67; P<.0001) and neonates had significantly lower values when compared to older infants; 72.6 Β± 9.6 vs. 91.8 Β± 2.4, P<.0001. Multiple regression analysis indicated that the age-dependent relationship persisted after accounting for gender, gestational age, and weight percentile (P =β€Š.001). Two subjects (aged one and six days) depicted a change in the MRI characteristics of the BFP from primarily BAT to WAT at follow-up examinations two to six weeks later, respectively. Histological post-mortem studies of a 3 day and 1.1 month old revealed predominantly BAT and WAT in the BFP, respectively.ConclusionThe BFP is primarily composed of BAT during the first weeks of life, but of WAT thereafter. Studies are needed to investigate the contributions of BAT in the BFP to infant feeding and how it is altered by postnatal nutrition

    Brown adipose tissue in the buccal fat pad during infancy.

    Get PDF
    The buccal fat pad (BFP) is an encapsulated mass of adipose tissue thought to enhance the sucking capabilities of the masticatory muscles during infancy. To date, no conclusive evidence has been provided as to the composition of the BFP in early postnatal life.The purpose of this study was to examine whether the BFP of neonates and infants is primarily composed of white adipose tissue (WAT) or brown adipose tissue (BAT).The percentage of fat in the BFP in 32 full-term infants (16 boys and 16 girls), aged one day to 10.6 months, was measured using magnetic resonance imaging (MRI) determinations of fat fraction.BFP fat fraction increased with age (r = 0.67; P<.0001) and neonates had significantly lower values when compared to older infants; 72.6 Β± 9.6 vs. 91.8 Β± 2.4, P<.0001. Multiple regression analysis indicated that the age-dependent relationship persisted after accounting for gender, gestational age, and weight percentile (P =β€Š.001). Two subjects (aged one and six days) depicted a change in the MRI characteristics of the BFP from primarily BAT to WAT at follow-up examinations two to six weeks later, respectively. Histological post-mortem studies of a 3 day and 1.1 month old revealed predominantly BAT and WAT in the BFP, respectively.The BFP is primarily composed of BAT during the first weeks of life, but of WAT thereafter. Studies are needed to investigate the contributions of BAT in the BFP to infant feeding and how it is altered by postnatal nutrition

    Developmental Regulation of p66Shc Is Altered by Bronchopulmonary Dysplasia in Baboons and Humans

    No full text
    Rationale: The p66Shc adapter protein antagonizes mitogen-activated protein, or MAP, kinase, mediates oxidative stress, and is developmentally regulated in fetal mouse lungs. Objectives: To determine if p66Shc is similarly regulated in primates and in bronchopulmonary dysplasia (BPD), which results from oxidative injury to immature lungs. Methods: Normal and injured lungs from humans and baboons were evaluated by Western analysis and immunohistochemistry. Measurements and Main Results: In baboons, p66Shc decreased 80% between 125 and 175 days' gestation (p = 0.025), then doubled after term delivery at 185 days (p = 0.0013). In the hyperoxic 140-day fetal baboon BPD model, p66Shc expression persisted, and its localization shifted from the epithelium of gestational controls to the mesenchyme of diseased lungs, coincident with expression of proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase, a marker of apoptosis. Treatment with the antibombesin antibody 2A11 attenuated BPD, reduced cell proliferation, increased p66Shc expression 10.5-fold, and preserved epithelial p66Shc localization. p66Shc also decreased during normal human lung development, falling 87% between 18 and 24 weeks' gestation (p = 0.02). p66Shc was expressed throughout 18-week human lungs, became restricted to scattered epithelial cells by 24 weeks, and localized to isolated mesenchymal cells after term delivery. In contrast, p66Shc remained prominent in the epithelium of lungs with acute injury or mild BPD, and in the mesenchyme of lungs with severe disease. p66Shc localized to tissues expressing proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase. Conclusions: p66Shc expression, cell proliferation, and apoptosis are concomitantly altered during lung development and in BPD

    Post-mortem MRI and histological examinations of the BFP.

    No full text
    <p>MRI and histological examinations of the BFP (arrow) in post-mortem studies of a 3 day old infant depicting low FF values (green) and small adipocytes, polygonal in shape, with multiple intracellular lipid droplets, characteristic of BAT (A) and a 1.1 month old infant depicting high FF values (red) and large white adipocytes, circular in shape, with single intracellular vacuoles of lipid droplets, characteristic of WAT (B).</p

    Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells

    Get PDF
    <div><p>Brown adipose tissue (BAT) dissipates chemical energy and generates heat to protect animals from cold and obesity. Rodents possess two types of UCP-1 positive brown adipocytes arising from distinct developmental lineages: β€œclassical” brown adipocytes develop during the prenatal stage whereas β€œbeige” or β€œbrite” cells that reside in white adipose tissue (WAT) develop during the postnatal stage in response to chronic cold or PPARΞ³ agonists. Beige cells’ inducible characteristics make them a promising therapeutic target for obesity treatment, however, the relevance of this cell type in humans remains unknown. In the present study, we determined the gene signatures that were unique to classical brown adipocytes and to beige cells induced by a specific PPARΞ³ agonist rosiglitazone in mice. Subsequently we applied the transcriptional data to humans and examined the molecular signatures of human BAT isolated from multiple adipose depots. To our surprise, nearly all the human BAT abundantly expressed beige cell-selective genes, but the expression of classical brown fat-selective genes were nearly undetectable. Interestingly, expression of known brown fat-selective genes such as <em>PRDM16</em> was strongly correlated with that of the newly identified beige cell-selective genes, but not with that of classical brown fat-selective genes. Furthermore, histological analyses showed that a new beige cell marker, CITED1, was selectively expressed in the UCP1-positive beige cells as well as in human BAT. These data indicate that human BAT may be primary composed of beige/brite cells.</p> </div

    Expression of a new beige cell marker CITED1 in mice and in humans.

    No full text
    <p>(<b>A</b>) Immunohistochemistry of UCP1 (left) and CITED1 (right) in serial sections of WAT in mice that were treated with CL316243 at a dose of 1 mg/kg (upper panels) or saline control (lower panels) for 8 days<b>.</b> Scale bar, 50 Β΅m. (<b>B</b>) Immunohistochemistry of UCP1 (left) and CITED1 (right) in serial sections of human BAT. Lower panels show IgG negative controls of immunohistochemistry for UCP1 (Cy3) and for CITED1 (FITC), respectively in human BAT. Scale bar, 50 Β΅m.</p
    corecore